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The results of experimental studies on the nonlinear evolution of perturbation waves 
in the turbulent wake behind a flat plate are presented. Sinuous perturbations a t  
several amplitudes and frequencies were introduced into the wake by oscillating a 
small trailing-edge flap. The Strouhal numbers of the perturbations were specially 
chosen so that the downstream location of the neutral point (where the spatial 
amplification rate obtained from linear theory vanishes) was well within the range of 
measurements. The streamwise evolution of the waves and their effect on the growth 
of the turbulent wake was investigated. The amplitude of the coherent Reynolds 
stress varied significantly with x and changed sign downstream of the neutral point. 
This resulted in rather strong changes in the spreading rate of the mean flow with x. 
At high forcing levels, dramatic deviations from the square-root behaviour of the 
unforced wake occurred. Although the development of the mean flow depended 
strongly on the forcing level, there were some common features in the overall 
response, which are discussed. The measured coherent Reynolds stress changed sign 
in the neighbourhood of the neutral point as predicted by linear theory. The 
normalized mean velocity profiles changed shape as a result of nonlinear interactions 
but relaxed to a new self-similar shape far downstream from the neutral point. 
Detailed measurements of the turbulent and coherent Reynolds stresses are 
presented and the latter are compared to linear stability theory predictions. 

1. Introduction 
Large-scale organized structures have been observed in many turbulent free shear 

flows including the axisymmetric turbulent jet (Crow & Champagne 1971), the two- 
dimensional mixing layer (Brown & Roshko 1974) and the two-dimensional wake 
(Grant 1958; Taneda 1959; Castro 1971; Cimbala, Nagib & Roshko 1988). These 
large-scale coherent structures, which appear to play an important role in the 
dynamics/evolution of a flow, may result from an instability of the velocity profile 
to travelling wave disturbances (Gaster, Kit & Wygnanski 1985 ; Wygnanski, 
Champagne & Marasli 1986). External forcing of shear flows is often carried out with 
the intention to enhance, excite or trigger coherent structures and to establish a 
phase reference. Gaster et al. and Wygnanski et al. demonstrated the persistence of 
the coherent structures within forced mixing layers and wakes, respectively, for large 
streamwise distances (see also Marasli, Champagne & Wygnanski 1991). They 
applied linear stability theory which incorporated the slow divergence of the mean 
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flow (Bouthier 1972; Crighton & Gaster 1976) to describe the evolution of the 
externally introduced coherent structures. 

There appears to be a fine line between enhancing already existing structures and 
introducing something that would not have occurred naturally. Often, when the 
introduced perturbation is large enough to be detected and be used as a phase 
reference, i t  is also large enough to  violate the assumptions of linear theory. The 
nonlinear nature of the problem is evident as the distortion of the mean flow is 
observed when the wave amplitude is large (Oster & Wygnanski 1982; Weisbrot & 
Wygnanski 1988). Marasli (1989) and Marasli & Cohen (1989) predicted the local 
mean flow distortion and the first harmonic (which is generated by the interaction of 
the fundamental wave with itself) in a wake with a parallel, weakly nonlinear theory. 
Other dramatic effects of the presence of one or more waves on the mean flow can be 
found in Strange (1981) and Cohen & Wygnanski (1987), who performed experiments 
in axisymmetric jets and made comparisons with stability theory which included 
weakly nonlinear effects. They were able to generate mean flows with non-circular 
constant-velocity contours by introducing perturbations in two azimuthal 
modes. 

KO, Kubota & Lees (1970) pointed to the importance of the interaction between 
the disturbance wave and the mean flow via Reynolds stresses. Coherent Reynolds 
stress (-%?) measurements in the two-dimensional mixing layer by Weisbrot & 
Wygnanski (1988) have revealed some very interesting aspects of this interaction, 
namely the -.iiv" product was observed to change sign a t  some downstream location, 
which indicates the reversal of the direction of energy transfer between the mean flow 
and the perturbation. Cohen (1986) explained the sign reversal by considering a 
disturbance crossing its neutral point of stability. 

Marasli et al. (1991) studied the evolution of sinuous perturbation waves in the 
turbulent wake of a flat plate. The Strouhal number of the perturbations were chosen 
so that the waves remained amplified over the entire range of measurements. 
Detailed comparisons between linear stability theory and phase-averaged measure- 
ments of the coherent velocity fluctuations show that before significant amplification 
of the perturbation amplitude occurs, the agreement between the linear theory and 
the measurements is good. The measured amplitude and phase distributions of the 
streamwise and lateral components of the coherent or wave-induced velocity 
fluctuations as well as the coherent Reynolds stress agree well with their counterparts 
from linear theory. The coherent Reynolds stress, which becomes significant as the 
perturbation amplitude becomes large, augments the turbulent Reynolds stress 
causing the spreading rate of the wake to  increase. This nonlinear interaction 
between the fundamental and the mean flow is not strong enough to distort the self- 
similar shape of the mean velocity profile over the entire range of the measurements. 
The linear theory predictions deteriorate with increasing downstream distance 
because of nonlinearity and stronger interaction with the turbulence as the neutral 
point of the perturbation is approached. Linear stability theory for a slowly 
diverging flow was used to  predict the overall spatial amplification of the 
perturbation. An eddy-viscosity model was incorporated into the OrrSommerfeld 
equation in an attempt to  approximate the effects of turbulence on the evolution of 
the perturbation. Results from this model show better agreement with the measured 
data than those from the inviscid calculations. For the unforced flow, the peak in the 
measured spectrum of the cross-stream velocity fluctuations at any downstream 
location corresponds to the local neutral frequency predicted by the linear stability 
theory for inviscid, parallel flow. This result along with the evidence provided by 
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Wygnanski el al. (1986) suggests a possible link between the large-scale coherent 
structures observed in turbulent wake flows and stability theory. 

The objective of the present work is to investigate the effects of spatially travelling 
sinuous waves on the growth of a two-dimensional, turbulent far wake where the 
velocity defects are less than 10 % of the free-stream velocity. The Strouhal numbers 
of the perturbation waves are specially chosen so that the downstream location of the 
neutral point (where the spatial amplification rate obtained from linear stability 
theory vanishes) lies within the range of measurements. Various forcing amplitudes 
are studied, including some large-amplitude cases where strong nonlinear effects are 
present. When we initiated the present study, the most distinguishing effect of 
external excitations was an increase in the spreading rate of the wake. The rather 
dramatic effects on the flow development (similar to those cited for jets and mixing 
layers) to be presented here have not been observed before for wakes. We attempt 
to determine the applicability of linear stability theory to describe the experimental 
results. It will be demonstrated that the linear theory is only able to describe the 
early stages of the evolution of the structures where the nonlinear effects are less 
significant. 

2. Description of experiments 
The experiments were performed at the University of Arizona low-speed wind 

tunnel facility. The test section of the tunnel is 61 ern wide, 91 em high, and 6 m long. 
The flow speed for the present data was in the range 7-10 m/s, corresponding to 
Reynolds numbers based on the momentum thickness, Re, x 1000-1400. The flat- 
plate wake generator was mounted horizontally across the 61 cm span of the test 
section a t  a streamwise location 60 cm downstream of the inlet. Measurements of the 
velocity profile a t  this plane indicated that the flow was uniform to f0.25%. The 
free-stream disturbance level in the streamwise velocity component was approxi- 
mately 0.03%. More details about the facility can be found in Wygnanski et al. 
(1986). 

Velocities were measured using a rake of five Dantec 55P51 x -probes connected 
to  Dantec 55M01 and 56C01 constant-temperature anemometers. The total height of 
the rake was 5.4 em. The rake was mounted on an internal traversing mechanism 
with a thin, forward-swept probe support, placing the sensors upstream of any 
regions of flow interference caused by the mechanism. A Masscomp-5500 with a 16- 
channel A/D converter and a vector accelerator was used for data acquisition and 
processing. 

For calibration, the hot wires were placed in the free stream, well outside the wake. 
The conditioned bridge signals and the output of the pressure transducer connected 
to  the Pitot tube were sent to the A/D converter. The x-wires were calibrated 
against both velocity and yaw angle variations using the procedure described in 
Wygnanski et al. (1986) and Marasli (1989). 

The flat-plate wake gcnerator used in the experiments was a solid aluminium plate 
30 cm long, 61 cm wide, and 0.635 cm thick. The leading edge of the plate was 
rounded, and the trailing edge was tapered to  1 mm thickness over the last 10 em of 
the chord. Trip wires were placed 3 em from the leading edge, generating a turbulent 
boundary layer before the tapered section was reached. Sinuous waves were 
generated by oscillating a steel flap (0.1 mm thick, 6 mm in chord-length) which was 
hinged to the trailing edge of the plate with scotch tape. Nylon ribbons were used to 
connect the downstream edge of both sides of each flap to  matched loudspeakers, 
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which were located on each side of the plate just outside of the tunnel sidewalls. The 
maximum displacement of the trailing edge of the flap was less than 2 mm (peak-to- 
peak) for all the cases pr ented here, except for the very high-amplitude case where 
it was approximately 4 m % . 
3. Results and discussion 

3.1. Constant-frequency forcing at various amplitudes 
Based on the observations of Oster & Wygnanski (1982) and Cohen (1986) in two- 
dimensional mixing layers, one expects rather pronounced effects in the behaviour 
of the mean flow as the introduced perturbation goes through the neutral point of 
amplification. As our objective was to  investigate a disturbance that reached its 
neutral point within the domain of measurements, an appropriate excitation 
frequency had to  be chosen. Marasli et al. (1991) computed the amplification rates for 
sinuous waves of various frequencies using inviscid, linear stability theory and 
measured mean velocity profiles. It was estimated that a 70 Hz wave should become 
neutrally stable near z = 2/28 = 430. Frequencies in the range from 70 to  100 Hz 
were chosen for the present experiments. 

A range of flap amplitudes was investigated for a frequency of 70 Hz and a free- 
stream velocity of 7 m/s. The resulting momentum thickness, 8, was 2.2 mm. 
Forcing levels are given in terms of the response of the flow, at a reference 
location z = 60, rather than the flap amplitude itself (see the Appendix for brief 
review of the triple decomposition (Reynolds & Hussain 1972) nomenclature). The 
streamwise variation of the half-width of the wake Lo and the centreline velocity 
deficit uo(see figure 1) are used to characterize the development of the mean velocity 
field. 

For the unforced wake, the flow is approximately self-preserving with L, - d and 
uo - 2-4, therefore the dimensionless quantity Lo rJ,/6uo increases linearly with x. 
This parameter, which is inversely proportional to the maximum of the mean 
vorticity at a given x-station of the wake, may be thought of as representing the 
diffusion of vorticity in the streamwise direction. It is thus an important parameter 
characterizing the mean motion in the wake and we shall refer to it as the growth 
parameter for brevity. The variation of Lo U,/8uo with z is shown in figure 2 for a 
variety of forcing levels in the range 0-89 %. The unforced case (hexagons) shows the 
expected linear growth with z while the behaviour of the forced wake depends on the 
forcing level. It should be noted that the streamwise variation of the individual 
parameters Lt and l /u; is similar to that of the non-dimensional growth parameter. 
For the 17 YO forcing level the rate of growth of the wake is initially larger than that 
for the unforced case and the growth parameter diverges almost linearly until 
z = 300, after which a break in the slope occurs and the wake stops growing. The wake 
appears to  resume growing further downstream. This type of downstream evolution 
has not been previously observed for turbulent, two-dimensional wakes. Similar 
behaviour in the growth of a forced, turbulent, two-dimensional mixing layer was 
observed by Oster & Wygnanski (1982). When the forcing level is increased to 30 %, 
the wake develops in a similar manner but the initial growth rate is larger, leading 
to an earlier, better defined break, followed by a longer region of almost parallel flow. 
Beyond z = 600 the wake appears to be growing again ever so slightly. The most 
striking effect in the development of the growth parameter occurs at the 89 YO forcing 
level. I n  this case the initial growth is so rapid that i t  is hardly detected, owing to  
the relatively large streamwise interval in the measurement. A region of strong 
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FIQURE 1 .  A sketch of the wake defining the nomenclature. 
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FIGURE 2. The streamwise variation of the non-dimensional wake growth parameter for wakes with 
various forcing amplitudes and constant forcing frequency (70 Hz): Q, unforced; A, low 
amplitude (17%);  0 ,  medium amplitude (30%); V, high amplitude (89%). 

contraction immediately follows the initial region of large growth, and further 
downstream the wake resumes growing but at  a rate that is much less than that of 
the unforced wake. No parallel-flow region is apparent for this case. The resumption 
of growth occurs downstream of the location where the growth parameter for the 
forced wake crosses that of the unforced wake. One should note that, even at the 
highest forcing level, the coherent structures do not dominate the flow, such as in the 
wake of an oscillating airfoil reported by Koochesfahani (1989) where at much higher 
forcing levels the wake flow may exhibit the characteristics of a jet. In the present 
case the coherent and turbulent Reynolds stresses are of the same order of 
magnitude, hence a reasonable competition exists between the coherent structures 
and incoherent turbulence. 



516 B. Marasli, F .  H .  Champagne and I .  Wygnanski 

The downstream variation in the spreading rate of the mean flow can be better 
understood by considering the time-averaged x-momentum equation for the small- 
deficit wake, which in the presence of coherent and turbulent motion takes the form 

3 0  a - =  
ax ay 

u,- = --(u’v’+uv), 
- 

The turbulent Reynolds stress -u’v’, which dictates the spreadin.rate of the 
unforced flow, is augmented by the coherent Reynolds stress -G, causing a 
change in the divergence of the forced wake. As the amplification rate of the 
perturbation wave changes with x, the amplitude of the coherent stress varies 
significantly with downstream distance. This results in rather strong changes in the 
spreading rate of the mean flow with x. Although the development of the mean flow 
depends strongly on the forcing level, there are some common features in the overall 
response which can be characterized by three distinct regions. Initially, the rate of 
growth is nearly linear with x with a slope that is monotonically increasing with the 
forcing level. Then a break in the slope occurs at LO U,/BuO x 230, which corresponds 
to fLO/U,  z 0.22. We shall refer to the region up to the break point as region I. This 
value for the non-dimensional frequency near the break point is close to the neutral 
Strouhal number (xt,) obtained from linear stability calculations using the measured 
mean velocity profiles. For the inviscid case St,  = 0.25, while a value of 0.19 is 
obtained using a constant eddy-viscosity model (Reo = 31) with the Orr-Sommerfeld 
equation (Marasli, Champagne & Wygnanski 1989, 1991). The exact location of the 
neutral point is difficult to determine theoretically, as nonlinear terms are not 
negligible near the end of the amplified region of the disturbance. After the break 
point, the mean flow readjusts towards the unforced state. The nature of this 
readjustment depends on the extent of the initial departure from the unforced case 
and may consist of a gradual growth, an almost parallel behaviour or a contraction. 
In all cases the mean flow starts spreading again after the growth parameter crosses 
the unforced line, but the rate of growth is lower than that of the unforced case. The 
latter behaviour is less obvious for the lower-amplitude cases, although evidence 
obtained from other data to be subsequently presented supports this claim. We 
designate the readjustment zone from the break point to  the point of intersection 
with the unforced wake as region 11. Downstream of the intersection point will be 
referred to as region 111. 

3.2. Constant-amplitude forcing at various frequencies 
In order to determine the effects of variation in the excitation frequency on the 
development of the mean flow, data were acquired a t  several frequencies, holding the 
initial amplitude of the perturbation constant. Results from two different forcing 
levels are presented. 

Figure 3 displays the variation of the mean flow with streamwise distance for four 
different excitation frequencies in the range 70-100 Hz, with an approximately 
constant forcing level of 30 ‘YO, and Urn = 7 m/s. The unforced case is again included 
for comparison. Since the forcing level is defined via the response of the flow rather 
than the magnitude of an input quantity, adjustment of the amplitude involved an 
iterative process and the actual forcing levels were 30 ‘YO, 31 YO, 33 % and 36 YO for the 
70, 80, 90 and 100 Hz data, respectively. The three regions discussed in the previous 
section are clearly visible. In  each case the wake resumes its growth near the point 
of intersection with the unforced wake. This rate of growth appears to be slower at 
the lower frequencies of forcing. 
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FIGURE 3. The streamwise variation of the non-dimensional wake growth parameter for wakes with 
various forcing frequencies and constant forcing level ( - 30 %) : 0,  unforced ; @,70  Hz ; Q, 80 Hz ; 
q, 90 Hz; m, 100 Hz. 
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FIQURE 4. The streamwise variation of the non-dimensional wake growth parameter for wakes with 
various forcing frequencies and constant forcing level ( N 17 %j : Q, unforced; A, 70 Hz ; 0,  
100 Hz. 

Another data set at a lower initial amplitude is presented in figure 4. The forcing 
level was 17.4% for the 70Hz data and 19% for the 100Hz case, forcing an 
approximately constant-amplitude set. It is quite clear from both figures that the 
break in the growth occurs earlier and at a lower level as the forcing frequency is 
increased. On the other hand, the overall shape of the streamwise variation of the 
growth parameter does not seem to be a function of the excitation frequency. This 
suggests that groups of data with constant forcing levels could be collapsed on one 
curve by a suitable non-dimensionalization. This indeed proved to be the case. By 
inspection of figures 24, one sees that both the abscissa and ordinate must be scaled 
by the frequency. There are several equivalent choices for the scaling. One such 
choice results in a plot of the local Strouhal number fL,/U, versus fx/U,,,. The 
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FIGURE 5. The variation of the local Strouhal number versus the scaled streamwise coordinate ; 
-30% forcing level: 0 ,  70 Hz; Q, 80 Hz; q, 90 Hz; m, 100 Hz; b, 100 Hz (10 m/s). 
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FIGURE 6. The variation of the local Strouhal number versus the scaled streamwise coordinate ; 

5 1 7 %  forcing level: A, 70 Hz; 0, 100 Hz. 

abscissa is the ratio of the streamwise coordinate to tthe wavelength of the 
perturbation where the latter remains approximately constant for a slowly diverging, 
small-deficit wake. The ordinate represents the ratio between the local width of the 
flow and the wavelength. Figure 5 depicts the -30% forcing level data (including 
a set at Urn = 10 m/s, f = 100 Hz), plotted in this manner. A similar plot of the - 17 % data is given in figure 6. In  both cases, data with different frequencies have 
collapsed on one curve that is dependent on the forcing level. The Strouhal number 
at  the break point is approximately 0.22 and is associated with the perturbation 
going through its neutral point. 

Since uo Lo/U,  B = const for small-deficit wakes, replacing the ordinate with f8/u0 
would have given a similar collapse. The latter quantity is formally identical to  the 
scaling used in the case of a plane mixing layer (Cohen 1986) where 8 varies with z 
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while uo (average of the two streams) is a constant. In the case of a constant-velocity- 
ratio mixing layer, the abscissa is identical to the one used in the present case and 
consequently the analogy between the parameters scaling both flows is complete. The 
two quantities, fL,/U, and f8/uo,  can be combined in the form f 2(L, Blu, Urn) ,  which 
would also result in a similar representation. 

The virtual origin xo in the abscissa provides a translational shift to match the 
break points of the different data sets. One explanation for the need for a shift can 
be given by considering the relative amplitudes of the different cases involved. Since 
the streamwise location of the break point is associated with the neutral point, small 
variations in the amplitudes among different sets cause the location of the neutral 
point to shift slightly from one set to the other. Therefore, a small translation of the 
abscissa is necessary to compensate for the small differences in the forcing levels. The 
xo values used in figure 5 are plotted versus the respective forcing levels in figure 7. 
Note that, the supposedly constant forcing levels actually vary between 28% and 
36 YO. The 33 YO data set is arbitrarily assigned a shift of zero. The 36 Yo set, having 
a larger amplitude, reaches its neutral point earlier than the 33% case, hence 
requiring a negative offset. Similarly, forcing levels that arc less than 33% require 
positive shifts. 

3.3. Reynolds stress measurements 
Reynolds stress measurements were also obtained for the data presented in the 
preceding sections. In this section, the development of the total, coherent and 
turbulent Reynolds stresses are discussed using the 100 Hz, 36 YO forcing level data 
as a typical case. The streamwise variation of the growth parameter for the 100 Hz 
case and the unforced wake is presented in figure 8(a) .  Regions I, I1 and I11 are 
delineated in the plot. The maxima of the Reynolds stress measured at  each 
streamwise location for the positive-y side of the wake are plotted versus in figure 
8 (b ) .  A plot of the Reynolds stresses integrated over the transverse coordinate yields 
similar information; therefore we shall just present the maxima. - In  figure 8 ( b )  the 
dashed curve represents - the turbulent Reynolds stress - U ’ V ’ ~ ~ ~ ,  the dotted curve 
corresponds to - Cfirnax and the dotted-dashed curve represents the total Reynolds 
stress. The Reynolds stress corresponding to the unforced case is shown with a solid 
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curve. In  region I both the turbulent and coherent stresses have the same sign and 
comparable magnitudes. This results in a larger total Reynolds stress which causes 
the rapid initial spreading of the mean flow. Note that the break point defining the 
end of region I does not occur a t  the downstream location where the coherent stress 
reverses sign, but i t  occurs a t  the location where the coherent and turbulent stresses 
are of equal magnitude. The x-location where region I11 begins (corresponding to  the 
intersection of the forced and unforced data on the growth parameter plot) coincides 
with the location where the turbulent stress overtakes the total stress. In  this region 
the coherent component has reversed its sign and is therefore subtracted from the 
turbulent component to  make the total less than the turbulent part. This is related 
to the resumption of the growth of the mean flow, but with a smaller slope than that 
of the unforced case. Further downstream where the coherent component becomes 
increasingly less important, the total and turbulent parts are almost identical, and 
the growth parameter curve €or the mean wake tends to become parallel to  that for 
the unforced case. Region I1 is the transitional region between I and 111, where the 
sign reversal of the coherent part occurs. 

Transverse distributions of the three Reynolds stress components are plotted for 
selected streamwise locations in figure 9. I n  this figure the columns correspond to 
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FIGURE 9. The cross-stream Reynolds stress distributions a t  various x-stations ; 100 Hz, 36 o/o 
forcing level. (a) Total (a); ( b )  coherent (0) ;  ( c )  turbulent (m). 

- (u’v’+G) (total Reynolds stress), -a (coherent part) and -a (turbulent part) 
respectively. Each row represents a different x-station. The first station is within 
region I, the next three are in region I1 and the last one is in region 111. The abscissa 
is the normalized y-coordinate. For each x-station, the ordinates are normalized by 
the largest of the three to show the relative amount present in each component. 
Initially, at  z = 56, both the coherent and turbulent parts have similar shapes, with 
the coherent part constituting N 75 % of the total. Data in the second row are taken 
from the beginning of region I1 and show a rather peculiar kink which has developed 
around the centreline of the coherent component. This kink is also apparent in the 
total Reynolds stress. It is evident from the next rows that this kink is the early stage 
of a process in which the coherent stress in reversing direction. This transition occurs 
throughout region 11. Finally in region 111, the reversal has been completed (fifth 
row), and the turbulent part has become the dominant component. The turbulent 
Reynolds stress does not go through a sign reversal. Since the total Reynolds stress 
is the superposition of the two components, at  times it displays rather scattered 
looking distributions, resulting from the addition of two components with opposing 
signs (e.g. Z = 227 data in the fourth row). Similar observations were also made in a 
two-dimensional mixing layer by Weisbrot & Wygnanski (1988). 

The sign reversal of the coherent Reynolds stress is related to the fact that the 
perturbation wave travels through its point of neutral stability (also see Cohen 1986). 
In order to verify this, the OrrSommerfeld equation was solved in the 
neighbourhood of the neutral point (assuming parallel flow) and the resulting shapes 
of the Reynolds stress profiles were studied. For demonstration purposes, the 
parameters from the 100Hz case were used. In the vicinity of the break point, 
u,, = 0.072 and the Reynolds number based on the half-width and the molecular 

- -  
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FIGURE 10. The Reynolds stress distributions for a disturbance crossing the neutral point of 
stability ; linear theory. 

viscosity is 6300 for the 100 Hz data. The resulting Reynolds stress profiles are plotted 
in figure 10. As the disturbance passes from the amplified region into the damped 
region the Reynolds stress profiles change sign and, though the shapes are not 
identical, the overall transition is quite similar to  the experimental measurements 
presented in figure 9(b). For this velocity profile, the linear theory predicts the 
neutral frequency to be 120 Hz. Hence, according t,o the linear theory, the 100 Hz 
wave is still amplified, which does not agree with the conclusions drawn from the 
Reynolds stress measurements. This overestimation can be attributed to the 
interaction of the coherent wave with the background turbulence. A similar analysis 
using a constant eddy-viscosity model (Re = 210) gives 72 Hz as the neutral 
frequency. Near the neutral point, the lengthscales of the most energetic turbulent 
fluctuations and the wavelength of the excitation are comparable (Marasli et al. 1989 ; 
Cimbala et al. 1988), which may cause the coherent-turbulent field interactions to be 
too large to be modelled by linear theory. 

3.4. Mean velocity profiles 
The sinuous perturbation waves introduced by the trailing-edge flap are amplified as 
they propagate downstream. The coherent Reynolds stress eventually can become 
significant, resulting in the modification of the mean flow. The first sign of nonlinear 
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FIGURE 11.  The normalized mean velocity profiles at various z-stations and comparison with the 
unforced profile; 100 Hz, 36% forcing level. (a) Region I ;  ( b )  region 11; (c) region 111. The solid 
curves represent the unforced profile. 

effects on the mean flow is the increased rate of spreading in region I. Here, the 
coherent Reynolds stress augments the turbulent Reynolds stress causing the 
spreading rate of the wake to increase. In this initial region, the nonlinear interaction 
is not strong enough to affect the shape of the mean velocity profile, as can be seen 
in figure 11 (a ) .  The profiles plotted are from the 100 Hz data with a 36 YO forcing 
level. The abscissa is the non-dimensional transverse coordinate 11 = y/L,. Each 
symbol represents a different streamwise location. The solid curve is the profile for 
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the unforced case. The velocity profiles in this region are almost identical to those for 
the unforced case and are self-similar, even though the forced wake diverges much 
faster than the unforced wake, as demonstrated in figure 3. 

Visible changes in the profiles occur in region 11. The profiles in this region for the 
100 Hz case are given in figure 11 (b) .  Comparison with the solid curve that represents 
the unforced state indicates that beyond 171 x 2, the forced profiles deviate from the 
unforced one. Region I1 is a transitional region where the profiles keep changing and 
thus are not self-similar. 

A different-shaped self-similar velocity profile is found in region 111. The difference 
between this state and that of the unforced case is clearly visible in figure 11(c).  
Similar deviations from the unforced velocity profiles were also observed in a two- 
dimensional mixing layer by Oster & Wygnanski (1982) and Weisbrot & Wygnanski 
(1988). 

The changes in profile shape can easily be explained by considering (1) with a mean 

where h(q) is the self-similar velocity profile. By substituting (2 )  into (1) and 

- -  integrating, one obtains 

- uo dLo7h(B). dx 
u’v’ + .iid - 

4 (3)  

Here we have used the fact that the product uoLo, which is proportional to the 
momentum thickness of the wake, is a constant. For a self-preserving wake, 
(l/u,,) (dL,/dx) is a constant, hence the Reynolds stress is simply proportional to 
qh(q) (see also Wygnanski et ul. 1986). Although the forced wake is not self-preserving 
by any means, (3 )  can still be used to describe the trends as the parameters vary. It 
is clear that the shape of the mean velocity profile is directly related to the shape of 
the total Reynolds stress profile. When the latter changes in region 11, the former has 
to change, as seen in figure 11 (b ) .  Similarly, in regions I and 111, where the total 
Reynolds stress profile conserves its shape, h(q) stays invariant (figure l l a ,  c). We 
can also see from (3) that  in regions I and 111, since h(7)  does not change, an increase 
in the left-hand side will increase ( l/uo) (dl;,/dx), which translates to  an increase in 
the rate of spreading. 

It is interesting that, although far downstream -?% is only a small fraction of the 
total Reynolds stress (see figure Sb), within the range of the measurements a return 
to the original self-similar shape is not observed. It is possible that further 
downstream, after the coherent disturbance has completely disappeared, the velocity 
profile will return to its original (unforced) shape; however, the present data do not 
show any trend in that regard. 

3.5. Comparison with linear stability theory 

Marasli et al. (1991) presented detailed comparisons between linear stability theory 
and phase-averaged measurements of the coherent velocity fluctuations in the 
turbulent wake of a flat plate with 15 % forcing level. The theory, which incorporated 
the slow divergence of the mean flow, predicted the streamwise evolution of the 
disturbances quite well. The prediction deteriorated far downstream as the 
perturbation amplitude reached high enough levels which violated the assumptions 
for the linear theory. 

Since for the cases presented in this article the spatial evolution of the perturbation 
is a nonlinear process, one cannot expect the linear theory to accurately predict the 
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experimental results. However, for comparison purposes, we will present mode 
shapes computed from spatial stability for locally parallel flow and demonstrate the 
limitations of linear theory. As the linear theory prediction is the first term in the 
perturbation expansion of a weakly nonlinear theory, at least in the early stages 
some agreement is expected. The 100 Hz, 36 % forcing level data will be used for this 
purpose. 

Figure 12 depicts the iif amplitudes and phases from several x-stations. The first 
station is in region I, the second station is in region I1 and the last one is in region 
111. The solid lines represent the stability calculations and the symbols correspond 
to the measurements. (For the details of the stability calculations, the reader is 
referred to Marasli et al. 1989, 1991.) The abscissa is the dimensional y-coordinate. 
The ordinates in figure 12(a) are the normalized amplitudes of l z f .  Maxima of the 
measured data and the calculations are matched a t  each station to compare the local 
shapes. Relative phase distributions are presented in figure 12 ( b ) .  Since damped 
modes were anticipated for regions I1 and 111, the molecular viscosity was used in the 
Orr-Sommerfeld equation. In the amplified region the inviscid calculations are 
almost identical to those with the molecular viscosity (Marasli et al. 1989). In region 
I, the agreement is very good. However, in regions I1 and 111 there are significant 
differences. The location of the maximum amplitude is not predicted. The computed 
phase distributions are typical of those for amplified waves, namely the phase 
difference between the central and outer regions of the wake is negative. However, 
the measurements indicate a positive phase difference, which is the case for damped 
waves at  high Re. 

One should note that the failure of the linear theory is not due to the divergence 
of the wake but to the nonlinearities near the neutral point. This is evident from 
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figure 8 ( a )  where for 100 < E < 200 the flow is almost parallel but the linear theory 
fails. It is important to note that although the extra divergence of the mean flow 
occurs owing to the nonlinear growth of the disturbances, part of this nonlinearity 
can be handled with a linear theory by assuming that the distorted mean flow is 
known from the experiments, as done by Gastcr et al., Wygnanski et al. and Marasli 
et al. (1991). However, as displayed here, the part that cannot be handled by the 
linear theory is when the disturbance approaches the neutral point. 

In  earlier discussion, the break point in the mcan flow was related to the neutral 
point of stability. However, no statement was made about the exact location of the 
neutral point ; rather it was deduced from the sign reversal of the coherent Reynolds 
stress. Thc thcory predicts small but positive growth rates a t  the break point and 
further downstream. A constant-eddy-viscosity model did not provide a more 
accurate prediction of the neutral point either. The interaction between the coherent 
and turbulent fields could be the source of this problem. In general, whenever the 
excitation frequency is large (say, larger than the local most amplified frequency), 
the lengthscales of the most energetic turbulent fluctuations and the wavelength of 
the excitation are comparable, and nonlinear interaction could conceivably be more 
intense, leading to the failure of linear theory to  predict the mode shapes and the 
amplification rates. Another reason for the failure of linear theory could be the strong 
critical-layer nonlinearitics present near the neutral point. in which case a composite 
expansion that accounts for both the slow divergence of thc wake and nonlinear 
critical-layer effects as done by Goldstein & Leib (1988) and Goldstein & Hultgren 
(1988) would be necessary. 

4. Conclusions 
The nonlinear development of perturbation waves in the turbulent wake of a flat 

plate was investigated experimentally. .is the Strouhal numbers of the perturbations 
were specially chosen so that the dowrist#ream location of the neutral point was well 
within the range of of measurements, rather interesting effects on the growth of the 
mean wake flow were observed. The downstream variation in the growth rate of the 
mean flow is related to the transverse gradient of the total Reynolds stress through 
the time-averaged x-momentum equation for the small-deficit wake. The turbulent 
Reynolds stress, which dictates the spreading rate of the unforced flow, is augmented 
by the coherent Reynolds stress, causing a change in the divergence of the forced 
wake. The amplitude of the coherent stress varies significantly with downstream 
distance eventually changing sign in the neighbourhood of the neutral point. 

The development of the mean flow depends strongly on the forcing level, but there 
are some common features in the overall response which can be characterized by 
three distinct regions. In region I the growth parameter, Lo U,/Bu,, varies almost 
linearly with x and has a slope that is proportional to the forcing level. As both the 
turbulent and coherent streses have the same sign and comparable magnitudes in 
this region, this results in a larger total Reynolds stress which causes the rapid initial 
spreading of the mean flow. A break in the slope occurs where the local Strouhal 
number, fL,/U,, is approximately 0.22. This value is close to the theoretical values 
predicted for the neutral Strouhal number. Linear stability calculations using the 
measured mean velocity profiles give a value of 0.25 for the inviscid case, while a 
value of 0.19 is obtained using a constant-eddy viscosity model with the 
Orr-Sommerfeld equation (Marasli et al. 1991). The exact location of the neutral 
point is difficult to  determine theoretically as nonlinear terms are not negligible near 
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the end of thc amplified region. The break point defining the end of region I does not 
occur at the downstream location where the cohercnt stress reverses sign, but is at 
the location where the coherent and turbulent stresses are of equal magnitude. After 
the break point, the mean flow readjusts towards the unforced state in region 11. 
Depending on the extent of the initial departure from the unforced case this 
readjustment may consist of gradual growth, almost parallel-flow behaviour or 
contraction. Region I11 begins at  the x-location where the growth parameter crosses 
the unforced line and this coincides with the location where the turbulent stress is 
approximately equal to the negative of the coherent stress. In all cases the mean flow 
starts spreading again, but the rate of growth is lower than that of the unforced case. 

Data sets from various cases with different frequencies but identical initial 
perturbation amplitudes can be collapsed on one curve by plotting fL, /U,  versus 
fxlU,. The former is the ratio of the local width of the wake to the disturbance 
wavelength, where the latter is the streamwise coordinate scaled with the 
wavelength. 

The variation in the wake growth rate is caused by the nonlinear interaction of the 
perturbation wave with the mean flow. This can be discussed in terms of the 
energetics of the flow as follows. In the region upstream of the neutral point (region 
I), the perturbations are being amplified and energy is transferred from the mean 
flow to the perturbation. When the coherent stress changes sign through the neutral 
point, the direction of energy transfer changes and the mean flow gains at the 
expense of the perturbation. This demonstrates that the lateral rate of spread of the 
wake is closely linked with the growth of the perturbation wave; amplification of the 
wave results in a transfer of energy from the mean flow and an increased mean flow 
divergence. Further evidence to substantiate this can be obtained by noting that the 
initial divergence of the wake increases with increasing forcing amplitude. The 
contraction of the wake may be attributed to the transfer of energy from the 
perturbation wave to the mean flow in the damped region beyond the neutral point. 

The normalized mean velocity profiles changed shape as a result of nonlinear 
interactions but appear to relax to a new self-similar shape far downstream from the 
neutral point. Detailed measurements of the turbulent and coherent Reynolds 
stresses are presented and the latter are compared to linear stability theory 
predictions. The qualitative features of the sign reversal in the coherent Reynolds 
stress predicted by the OrrSommerfeld solutions are quite similar to those in the 
measurements. However, linear stability theory failed to predict the evolution of the 
disturbances except for the early stages where the perturbation amplitudes were low. 
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Appendix 
In the presence of coherent motion such as the one we have introduced externally, 

an instantaneous variable (for example, the streamwise velocity) can be considered 
to consist of three components (Reynolds & Hussain 1972) : 

u(x,t) = q x ) + c ( X , t ) + U ’ ( x , t ) .  (A 1 )  

Here 0 is the mean or time-averaged part, z2 is the coherent part representing the 



528 B.  Marasli, F .  H .  Champagne and I .  Wygnanski 

periodic wave contribution, and u' represents the incoherent turbulent fluctuations. 
Here 4 can be obtained from the phase average, which is defined as 

(A 2) 
l N  

N-tm N n-1 

( u ( x , t ) )  = lim - C u ( x , t + n T )  = U ( x ) + ~ Z ( x , t ) ,  

where T is the period of the coherent fluctuations. 

fluctuations in the streamwise and cross-stream directions, and is given by 
The total Reynolds stress is defined as the correlation of the total velocity 

- -  
- (C + u') (6+ w') = - (a6+ u'w'), (A 3) 

where we have used the fact that the coherent and turbulent velocity fluctuations are 
uncorrelated. 
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